Relevance of Impact of Non-Drug Methods on Neuroplasticity in System of Neurorehabilitation: Multilevel Neuroplastic Effects of Electromagnetic Fields Caused by Transcranial Magnetic Stimulation
PDF

Keywords

patient rehabilitation
non-drug methods
electromagnetic fields
neuroplasticity
neurorehabilitation
synaptic plasticity
transcranial magnetic stimulation
multilevel neuroplastic effects

How to Cite

Chernenko, M., Nehreba, T., Voloshyna, N., Vasylovskyy, V., Pohulaieva, T., & Voloshyn-Haponov, I. (2025). Relevance of Impact of Non-Drug Methods on Neuroplasticity in System of Neurorehabilitation: Multilevel Neuroplastic Effects of Electromagnetic Fields Caused by Transcranial Magnetic Stimulation. SSP Modern Pharmacy and Medicine, 5(3), 45-62. https://doi.org/10.53933/cr4ryv89

Abstract

Strategic cooperation between clinical research institutions engaged in medical research and pharmaceutical companies focused on identifying and testing targets aimed at creating new innovative, high-quality, safe, effective and affordable medicines to address the therapeutic needs of patients suffering from psychoneurological and related health disorders (multiple sclerosis, neuro-oncology, post-traumatic stress disorder, stroke, drug addiction, alcoholism, etc.) in accordance with the state guarantee program and ICD-11. At the same time, the relevance of the impact of non-drug methods on neuroplasticity in the neurorehabilitation system of patients is beyond doubt. The authors addressed the impact of non-drug methods on neuroplasticity in the neurorehabilitation system. Multilevel neuroplastic effects of electromagnetic fields caused by transcranial magnetic stimulation are presented. The effects of transcranial magnetic stimulation on neurotransmitters and synaptic plasticity, glial cells and the prevention of neuronal death are examined. The neurotrophic effects of transcranial magnetic stimulation on the growth of dendrites, growth and neurotrophic factors are described. The effect of transcranial magnetic stimulation on the genetic apparatus of neurons is traced. It has been demonstrated that transcranial magnetic stimulation has a proven ability to modulate the internal activity of the brain in a frequency-dependent manner, generate contralateral responses, provide, along with the neuromodulatory and neurostimulating effect, influence the brain as a global dynamic system.

PDF

References

1. 4th Symposium of the International Consortium for Advanced Medicines Manufacturing: Celebrating Success and Advancing Adoption. Royal Sonesta. Cambridge USA: International Consortium for Advanced Medicines Manufacturing. April 27-28, 2023. URL: https://icamm.mit.edu/

2. Shapovalov V. Multidisciplinary Study of Medical Errors in the System of Legal Relations Between "Doctor-Patient-Pharmacist-Advocate" During the Circulation of Drugs. SSP Modern Pharmacy and Medicine. 2023. Vol. 3. No 2. P. Р. 1-10. DOI: https://doi.org/10.53933/sspmpm.v3i2.88

3. Shapovalova V., Shapovalov V., Osyntseva A. et al. Organization of the pharmaceutical business, industrial pharmacy and forensic pharmacy concerning the competences of quality management during the circulation of medical products: GxP standards. Actual problems of medicine and pharmacy. 2022. Vol. 3. Nо. 2. P. 1-20. DOI: https://doi.org/10.52914/apmp.v3i2.44

4. Shapovalov (Jr.) V., Shapovalova V., & Shapovalov V. Development of forensic and pharmaceutical researches within the organization of pharmaceutical business, drug technology and pharmaceutical law in Ukraine concerning the turnover of controlled drugs and substances. Health of Society. 2021. Vol. 10. Nо. 3. P. 98-106. DOI: https://doi.org/10.22141/2306-2436.10.3.2021.246351

5. Shapovalov V., & Veits O. Forensic and Pharmaceutical, Criminal and Legal, Social and Economic Study of the Conditions, that Cause Bribery Corruption in the System of Legal Relations "Doctor-Patient-Investigator-Lawyer". SSP Modern Law and Practice. 2022. Vol. 2. Nо. 3. P. 1-16. DOI: https://doi.org/10.53933/sspmlp.v2i3.57

6. Gryzodoub O., Shapovalov V. Quality Systems in Pharmacy: Multidisciplinary Context of the State Pharmacopoeia of Ukraine. SSP Modern Law and Practice. 2023. Vol. 3. Nо. 1. P. 1-23. DOI: https://doi.org/10.53933/sspmlp.v3i1.81

7. Maruta N.O., Khaustova O.O., Panko T.V. et al. Master class “Implementation of ICD-11 in the practice of treating mental and behavioral disorders: problems and solutions”. Ukrainian Medical Journal. 25.03.2025. URL: https://umj.com.ua/uk/zakhid-263895-0-majsterklas-vprovadzhennya-mkh-11-v-praktiku-likuvannya-psihichnih-ta-povedinkovih-rozladiv-problema-ta-rishennya

8. Scientific and practical conference with international participation "Innovative technologies for diagnostics, treatment and rehabilitation of neurological diseases in wartime conditions". Kharkiv; State Institution "Petro Vlasovich Voloshyn Institute of Neurology, Psychiatry and Narcology of the National Medical Academy of Sciences of Ukraine". Vasyl Nazarovich Karazin Kharkiv National University. 30.03.2024. URL: https://medicine.karazin.ua/announcements/292-naukovo-praktychna-konferentsiia-nevrolohichnykh-zakhvoriuvan

9. XXI International multidisciplinary scientific and practical conference "Medical and pharmaceutical law of Ukraine: organization and economics of pharmaceutical and medical business, circulation of medicines, technology, safety, effectiveness, quality control, general, forensic, evidence-based and clinical pharmacy and medicine, pharmacotherapy of health disorders". Kyiv: PNU "Research University of Medical and Pharmaceutical Law". 14.11.2024. URL: https://srumpl.org/Conference2024.html

10. Accelerating innovative drug discovery. Psychiatry Consortium. 2025. URL: https://psychiatryconsortium.org/

11. Resolution of the Cabinet of Ministers of Ukraine dated December 24, 2024 No. 1503 "Some issues of implementing the program of state guarantees of medical care for the population in 2025". Verkhovna Rada of Ukraine. Editorial dated April 12, 2025.URL: https://zakon.rada.gov.ua/laws/show/1503-2024-%D0%BF#Text

12. Shapovalova V. The ICD-11 for the twenty-first century: the first view from the organizational, legal, clinical and pharmacological aspects. SSP Modern Pharmacy and Medicine. 2022. Vol. 2. Nо. 1. P. 1-13. DOI: https://doi.org/10.53933/sspmpm.v2i1.37

13. Shapovalova V. Post-Traumatic Stress Disorder: Administration, Clinical and Pharmacological, Organizational and Legal, Pharmaceutical Management, Recent Case Studies. SSP Modern Pharmacy and Medicine. 2024. Vol. 4. Nо. 1. P. 1-8. DOI: https://doi.org/10.53933/sspmpm.v4i1.123

14. Shapovalova V. Multidisciplinary Case Studies of Neuro-Oncology Disorders: Administration, Clinical and Pharmacological, Organizational and Legal, Pharmaceutical Management. SSP Modern Pharmacy and Medicine. 2024. Vol. 4. Nо. 3. Р. 1-11. DOI: https://doi.org/10.53933/sspmpm.v4i3.151

15. Shapovalova V. Administration, Marketing, Pharmacotherapy of Medicines in Neuro-Oncology. SSP Modern Pharmacy and Medicine. 2024. Vol. 4. Nо. 4. Р. 1-12. DOI: https://doi.org/10.53933/sspmpm.v4i4.161

16. Shapovalova V. Pharmacotherapy of Depressive Disorders in Conditions of Coronavirus Disease: Pharmacoeconomic Experimental Study. SSP Modern Pharmacy and Medicine. 2023. Vol. 3. Nо. 3. Р. 1-11. DOI: https://doi.org/10.53933/sspmpm.v3i3.101

17. Ivanishyn-Hayduchok L., Shapovalova V., & Shapovalov V. ICD-11: Organizational and Legal, Medical and Pharmaceutical, Social and Economic Issues of Implementation of the Program of State Guarantees of Medical Care in 2022 in Ukraine, Based on The Fundamental Principles of the European Union. SSP Modern Pharmacy and Medicine. 2022. Vol. 2. Nо. 2. Р. 1-14. DOI: https://doi.org/10.53933/sspmpm.v2i2.53

18. León R., Sospedra M., Arce S. et al. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: a systematic review of the literature. Neurología (English Edition). 2022. Vol. 37. Iss. 3. P. 199-215. URL: https://www.elsevier.es/en-revista-neurologia-english-edition--495-articulo-current-evidence-on-potential-therapeutic-S217358082030078X

19. Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain Research. The Author(s). Published by Elsevier B.V. 23 April 2025. е149643. Р. 1-45. DOI: https://doi.org/10.1016/j.brainres.2025.149643

20. Evancho A., Tyler W.J., McGregor K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front. Hum. Neurosci. 2023. Vol. 17. 1151218. DOI: https://doi.org/10.3389/fnhum.2023.1151218

21. Resolution of the Cabinet of Ministers of Ukraine No. 296 dated 13.03.2024 “On approval of the Procedure for conducting restorative (post-isolation, reintegration) measures, adaptation measures, support (accompaniment) of persons in respect of whom the fact of deprivation of personal liberty as a result of armed aggression against Ukraine has been established, after their release”. Verkhovna Rada of Ukraine. Version dated 01.01.2025. URL: https://zakon.rada.gov.ua/laws/show/296-2024-%D0%BF#Text

22. Vasylovskyy V., Nehreba T., Voloshyna N. et al. Application of Glucocorticoids in Therapy of Multiple Sclerosis. SSP Modern Pharmacy and Medicine. 2024. Vol. 4. No. 2. Р. 1-14. DOI: https://doi.org/10.53933/sspmpm.v4i2.141

23. Chernenko M., Voloshyna N., Vasylovskyy V. et al. Study of the Level of Matrix Metalloproteinase-9 as an Indicator of Activity of Inflammatory Process Among Patients Suffering from Multiple Sclerosis. SSP Modern Pharmacy and Medicine. 2025. Vol. 5. No. 2. Р. 1-14. DOI: https://doi.org/10.53933/sspmpm.v5i2.184

24. Voloshyn-Haponov I., Chernenko I., Voloshyna N. Structural and functional changes in organs of the abdominal cavity in patients with Wilson’s disease. International neurological journal. 2024. Vol. 20. No. 4. Р. 185-190. DOI: https://doi.org/10.22141/2224-0713.20.4.2024.1080

25. Chernenko M., Nehreba T., Voloshyna N. et al. Modern Pulse Corticosteroid Therapy in Patients with Multiple Sclerosis: Adverse Events and Clinical and Pharmacological Measures to Eliminate Them. SSP Modern Pharmacy and Medicine. 2025. Vol. 5. No. 1. P. 1-15. DOI: https://doi.org/10.53933/sspmpm.v5i1.173

26. Vasylovskyy V., Nehreba T., Chernenko M. et al. Modern Experience of Pharmacotherapeutic Use and Effectiveness of Endolumbal Administration of Glucocorticoids in Progressive Types of Course for Multiple Sclerosis. SSP Modern Pharmacy and Medicine. 2024. Vol. 4. No. 3. P. 1-10. DOI: https://doi.org/10.53933/sspmpm.v4i3.157

27. Kricheldorff J., Göke К., Kiebs M. et al. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci. 2022. Vol. 12. No. 7. е929. DOI: https://doi.org/10.3390/brainsci12070929

28. Nicholas А., Basit А., Muili O. et al. Exploring the transformative influence of neuroplasticity on stroke rehabilitation: a narrative review of current evidence. Annals of Medicine & Surgery. 2023. Vol. 85. No. 9. Р. 4425-4432. URL: https://journals.lww.com/annals-of-medicine-and-surgery/fulltext/2023/09000/exploring_the_transformative_influence_of.38.aspx

29. Kiper P., Guzik A., Petrarca M., Oliva-Pascual-Vaca A. and Luque-Moreno C. Editorial: New approaches for central nervous system rehabilitation. Front. Neurol. 2024. Vol. 15. Р. 1-4. DOI: https://doi.org/10.3389/fneur.2024.1367519

30. Kuo C-L. Neuroplasticity-targeted intervention for idiopathic sudden sensorineural hearing loss: A new therapeutic direction. Neurology Neurosci Res. 2017. Vol. 1. No. 1. Р. 1-5. DOI: https://doi.org/10.24983/scitemed.nnr.2017.00014

31. Piatkevich K.D., Jun, E.E., Straub C. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 2018. Vol. 14. No 4. Р. 352-360. DOI: https://doi.org/10.1038/s41589-018-0004-9

32. Nitsche M.A., Paulus W. Transcranial direct current stimulation - Update 2011. Restor. Neurol. Neurosci. 2011. Vol. 29. Iss. 6. Р. 463-492. DOI: https://doi.org/10.3233/RNN-2011-06

33. Tufail Y., Yoshihiro A., Pati S. et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nature Protocol. 2011. Vol. 6. Iss. 9. Р. 1453-1470. URL: https://www.nature.com/articles/nprot.2011.371

34. Kim K.-U., Kim S. H., An T. G. Effect of transcranial direct cur- rent stimulation on visual perception function and performance capability of activities of daily living in stroke patients. J. Phys. Ther. Sci. 2016. Vol. 28. Iss. 9. Р. 2572-2575. DOI: https://doi.org/10.1589/jpts.28.2572

35. Satow T., Kawase T., Kitamura A. et al. Combination of transcranial direct current stimulation and neuromuscular electrical stimulation improves gait ability in a patient in chronic stage of stroke. Case Rep. Neurol. 2016. Vol. 8 (1). Р. 39-46. DOI: https://doi.org/10.1159/000444167

36. Andrade S.M., Batista L.M., Nogueira L.L. et al. Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehabil. Res. Pract. 2017. Vol. 2017. Article ID 6842549. Р. 1-9. DOI: https://doi.org/10.1155/2017/6842549

37. Sinitsyn D.O., Chernyavskiy A.Y., Poydasheva A.G. et al. Optimization of the navigated tms mapping algorithm for accurate estimation of cortical muscle representation characteristics. Brain Sciences. 2019. Vol. 9. No 4. Р. 1-21. DOI: https://doi.org/10.3390/brainsci9040088

38. Poydasheva A.G., Bakulin I.S., Legostaeva L.A. et al. TMS-EEG method: possibilities and prospects. Pavlov Journal of Higher Nervous Activity. 2019. Vol. 69. No. 3. P. 267-279. DOI: 10.1134/S0044467719030092.

39. Chervyakov A.V., Poydasheva A.G., Lyukmanov R.H. et al. Effects of Navigated Repetitive Transcranial Magnetic Stimulation after Stroke. Journal of Clinical Neurophysiology. 2018. Vol. 35. No. 2. Р. 166-172. URL: https://journals.lww.com/clinicalneurophys/abstract/2018/03000/effects_of_navigated_repetitive_transcranial.15.aspx

40. Korzhova J., Sinitsyn D., Chervyakov A. et al. Transcranial and spinal cord magnetic stimulation in treat- ment of spasticity. A literature review and meta-analysis. European Journal of Physical and Rehabilitation Medicine. 2018. Vol. 54. No 1. Р. 75-84. URL: https://pubmed.ncbi.nlm.nih.gov/28004906/

41. Chervyakov A.V., Chernyavsky A.Y., Sinitsyn D.O., Piradov M.A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. in Hum. 2015. Vol. 9. Article 303. P. 1-14. DOI: https://doi.org/10.3389/fnhum.2015.00303

42. Rosenkranz K., Kacar A., Rothwell J. C. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J. Neurosci. 2007. Vol. 27. No. 44. P. 12058-12066. DOI: https://doi.org/10.1523/JNEUROSCI.2663-07.2007

43. Ziemann U. TMS induced plasticity in human cortex. Rev. Neurosci. 2004. Vol. 15. No. 4. P. 253-266. PMID: 15526550. Ziemann U. "TMS Induced Plasticity in Human Cortex". Reviews in the Neurosciences. 2004. Vol. 15. No. 4. P. 253-266. DOI: https://doi.org/10.1515/REVNEURO.2004.15.4.253

44. Maeda F., Kleiner-Fisman G., Pascual-Leone A. Motor Facilitation While Observing Hand Actions: Specificity of the Effect and Role of Observer's Orientation. J. Neurophysiol. 2002. No. 87. Issue 3. Р. 1329-1335. DOI: https://doi.org/10.1152/jn.00773.2000

45. Sharbafshaaer М., Cirillo G., Esposito F. et al. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines. 2024. Vol. 12. No. 11. е2506. Р. 1-38. DOI: https://doi.org/10.3390/biomedicines12112506

46. Strafella A.P., Paus T., Barrett J. et al. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 2001. No. 21. Iss. 15. RC157. Р. 1-4. DOI: https://doi.org/10.1523/JNEUROSCI.21-15-j0003.2001

47. Cho S.S., Strafella A.P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One. 2009. 4. 8. e6725. URL: https://pubmed.ncbi.nlm.nih.gov/19696930/

48. Ko J. H., Monchi O., Ptito A. et al. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task – a TMS–[11C]raclopride PET study. Eur. J. Neurosci. 2008. Vol. 28. Iss. 10. Р. 2147-2155. DOI: https://doi.org/10.1111/j.1460-9568.2008.06501.x

49. Huang Y.Z., Chen R.S., Rothwell J.C., Wen H.Y. The aftereffect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 2007. Vol. 118. Issue 5. Р. 1028-1032. DOI: https://doi.org/10.1016/j.clinph.2007.01.021

50. Lisanby S. H., Belmaker R. H. Animal models of the mechanisms of action of repetitive transcranial magne- tic stimulation (rTMS): comparisons with electroconvulsive shock (ECS). Depress. Anxiety. 2000. Vol. 12. Iss. 3. Р. 178-187. DOI: https://doi.org/10.1002/1520-6394(2000)12:3<178::AID-DA10>3.0.CO;2-N

51. Cho S., Nam Y., Chu L. et al. Extremely lowfrequency magnetic fields modulate nitric oxide signaling in rat brain. Bioelectromagnetics. 2012. Vol. 33. Iss. 7. Р. 568-574. DOI: https://doi.org/10.1002/bem.21715

52. Kuwabara S., Cappelen-Smith C., Lin C. S. et al. Effects of voluntary activity on the excitability of motor axons in the peroneal nerve. Muscle Nerve. 2002. Vol. 25. Iss. 2. Р. 176-184. DOI: https://doi.org/10.1002/mus.10030

53. Hoogendam J. M., Ramakers G. M., Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010. Vol. 3. Iss. 2. Р. 95-118. URL: https://www.brainstimjrnl.com/article/S1935-861X(09)00109-0/abstract

54. 28 Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J. Clin. Neurosci. 2006. Vol. 13. Iss. 9. Р. 885-897. URL: https://www.jocn-journal.com/article/S0967-5868(06)00438-3/abstract

55. Cooke S.F., Bliss T.V. Plasticity in the human central nervous system. Brain. 2006. Vol. 129. Iss. 7. Р. 1659-1673. DOI: https://doi.org/10.1093/brain/awl082

56. Teo J.T., Swayne O.B., Rothwell J.C. Further evidence for NMDA-dependence of the aftereffects of human theta burst stimulation. Clin. Neurophysiol. 2007. Vol. 118. Iss. 7. Р. 1649-1651. DOI: https://doi.org/10.1016/j.clinph.2007.04.010

57. Bidesi N.S.R., Andersen I.V., Windhorst A.D. et al. The role of neuroimaging in Parkinson’s disease. Journal of Neurochemistry. 2021. Vol.159. Iss. 4. P. 660-689. DOI: https://doi.org/10.1111/jnc.15516

58. May A., Hajak G., Gänssbauer S. et al. Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb. Cortex. 2007. Vol. 17. Issue 1. Р. 205-210. DOI: https://doi.org/10.1093/cercor/bhj138

59. May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 2011. Vol. 15. No. 10. Р. 475-482. URL: https://people.uncw.edu/tothj/PSY595/May-Experience-Dependent%20Plasticity-TiCS-2012.pdf

60. Ueyama E., Ukai S., Ogawa A. et al. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin. Neurosci. 2011. Vol. 65. Iss. 1. Р. 77-81. DOI: https://doi.org/10.1111/j.1440-1819.2010.02170.x

61. Meng D.P., Xu T., Guo F.J. et al. The effects of high-intensity pulsed electromagnetic field on proliferation and differentiation of neural stem cells of neonatal rats in vitro. J. Huazhong Univ. Sci.Technol.[Med. Sci.]. 2009. Iss. 29. Р. 732-736. DOI: https://doi.org/10.1007/s11596-009-0612-4

62. Arias-Carrión O., Verdugo-Díaz L., Feria-Velasco A. et al. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J. Neurosci. Res. 2004. Vol. 78. Iss. 1. Р. 16-28. DOI: https://doi.org/10.1002/jnr.20235

63. Vlachos A., Müller-Dahlhaus F., Rosskopp J. et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J. Neurosci. 2012. Vol. 32. Iss. 48. P. 17514-17523. DOI: https://doi.org/10.1523/JNEUROSCI.0409-12.2012

64. Fujiki M., Kobayashi H., Abe T., Kamida T. Repetitive transcranial magnetic stimulation for protection against delayed neuronal death induced by transient ischemia. J. Neurosurg. 2003. Vol. 99. Iss. 6. Р. 1063-1069. DOI: https://doi.org/10.3171/jns.2003.99.6.1063

65. Ogiue-Ikeda М., Kawato S., Ueno S. Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus. Brain Research. 2005. Vol. 1037. Iss. 1-2. Р. 7-11. DOI: https://doi.org/10.1016/j.brainres.2004.10.063

66. Feng H.L., Yan L., Cui L.Y. Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain. Chin. Med. J. 2008. Vol. 121. Iss. 14. Р. 1307-1312. URL: https://pubmed.ncbi.nlm.nih.gov/18713553/

67. Gao F., Wang S., Guo Y. et al. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur. J. Nucl. Med. Mol. Imaging. 2010. Vol. 37. Iss. 5. Р. 954-961. URL: https://link.springer.com/article/10.1007/s00259-009-1342-3

68. Yoon K. J., Lee Y. T., Han T. R. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp. Brain Res. 2011. Vol. 214. Iss. 4. Р. 549-556. URL: https://link.springer.com/article/10.1007/s00221-011-2853-2

69. Ke S., Zhao H., Wang X. et al. Pretreatment with low-frequency repetitive transcranial magnetic stimulation may influence neuronal Bcl-2 and Fas protein expression in the CA1 region of the hippocampus. Neural. Regen. Res. 2010. Iss.5. Р. 895-900. DOI: 10.3969/j.issn.1673-5374.2010.12.003.

70. Xiao-Ming W. and Ju-Ming Y. The Clinical Application of Transcranial Magnetic Stimulation in the Study of Epilepsy. Intechopen. 2011. URL: https://www.intechopen.com/chapters/17819

71. Sun W., Mao W., Meng X. et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012. Vol. 53. Issue 10. Р. 1782-1789. DOI: https://doi.org/10.1111/j.1528-1167.2012.03626.x

72. Funamizu H., Ogiue-Ikeda M., Mukai H. et al. Acute repetitive transcranial magnetic stimulation reac- tivates dopaminergic system in lesion rats. Neurosci. Lett. 2005. Vol. 383. Issue 1-2. Р. 77-81. DOI: https://doi.org/10.1016/j.neulet.2005.04.018

73. Fang Z.Y., Li Z., Xiong L. et al. Magnetic stimulation influences Injury-Induced migration of white matter astrocytes. Biol. Med. 2010. Vol. 29. Iss. 3. Р. 113-121. DOI: https://doi.org/10.3109/15368378.2010.500568

74. Ma J., Zhang Z., Su Y. et al. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons. Neurochem. Int. 2013. Vol. 62. Iss. 1. Р. 84-91. DOI: https://doi.org/10.1016/j.neuint.2012.11.010

75. Baquet Z.C., Gorski J.A., Jones K.R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived Neurotrophic Factor. J. Neurosci. 2004. Vol. 24. No. 17. Р. 4250-4258. DOI: https://doi.org/10.1523/JNEUROSCI.3920-03.2004

76. Yukimasa T., Yoshimura R.,Tamagawa A. et al. High-Frequency Repetitive Transcranial Magnetic Stimulation Improves Refractory Depression by Influencing Catecholamine and Brain-Derived Neurotrophic Factors. Pharmacopsychiatry. 2006. Vol. 39. No. 2. Р. 52-59. URL: https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-2006-931542

77. Zanardini R., Magri L., Rossini D. et al. Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression. European Neuropsychopharmacology. 2007. Vol. 17. Iss. 10. Р. 651-657. DOI: https://doi.org/10.1016/j.euroneuro.2007.03.008

78. Lang C., Schüler D. Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J. of Physics: Condensed Matter. 2006. Vol. 18. No. 38. Р. 2815-2828. DOI: 10.1088/0953-8984/18/38/S19.

79. Gedge L., Beaudoin A., Lazowski L. et al. Effects of electroconvulsive therapy and repetitive transcra- nial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression. Front Psychiatry. 2012. Vol. 3. 12. DOI: https://doi.org/10.3389/fpsyt.2012.00012

80. Wang H.Y., Crupi D., Liu J. et al. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J. Neurosci. 2011. Vol. 31. Iss. 30. Р. 11044-11054. DOI: https://doi.org/10.1523/JNEUROSCI.2125-11.2011

81. Angelucci F., Oliviero A., Pilato F. et al. Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. Neuroreport. 2004. Vol. 15. Iss. 4. Р. 717-720. URL: https://pubmed.ncbi.nlm.nih.gov/15094483/

82. Müller M.B., Toschi N., Kresse A.E. et al. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology. 2000. Iss. 23. Р. 205-215. URL: https://www.nature.com/articles/1395507

83. Chernenko M., Voloshyna N., Vasylovskyy V. et al. Study of the Level of Matrix Metalloproteinase-9 as an Indicator of Activity of Inflammatory Process Among Patients Suffering from Multiple Sclerosis. SSP Modern Pharmacy and Medicine. 2025. Vol.5. No. 2. P.1-14. URL: https://doi.org/10.53933/sspmpm.v5i2.184

84. Ji R-R., Schlaepfer T.E., Aizenman C.D. et al. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc. Natl. Acad. Sci. U.S.A. 1998. Vol. 95. Iss. 26. Р. 15635-15640. DOI: https://doi.org/10.1073/pnas.95.26.15635

85. Hausmann A., Weis C., Marksteiner J. et al. Chronic repetitive transcranial magnetic stimulation enhances cfos in the parietal cortex and hippocampus. Brain Res. Mol. Brain Res. 2000. Vol. 76. Iss. 2. Р. 355-362. DOI: https://doi.org/10.1016/S0169-328X(00)00024-3

86. Aydin-Abidin S., Trippe J., Funke K. et al. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp. Brain Res. 2008. Vol. 188. Iss. 2. Р. 249-261. URL: https://link.springer.com/article/10.1007/s00221-008-1356-2

87. Cheeran B., Talelli P., Mori F. et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. 2008. Vol. 586. No. 23. Р. 5717-5725. DOI: https://doi.org/10.1113/jphysiol.2008.159905

88. Zanardi R., Magri L., Rossini D. et al. Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression. Eur. Neueopsychopharmacol. 2007. Vol. 17. Iss. 10. P. 651-657. DOI: https://doi.org/10.1016/j.euroneuro.2007.03.008

89. Simis M., Adeyemo B.O., Medeiros L.F. et al. Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation. Neuroreport. 2013. Vol. 24. No. 17. Р. 973-975. URL: https://journals.lww.com/neuroreport/abstract/2013/12040/motor_cortex_induced_plasticity_by_noninvasive.8.aspx

90. Eldaief М.C., Halko M.A., Buckner R.L. et al. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Mark C. Proc. Natl. Acad. Sci. U.S.A. 2011. Vol. 108. No. 52. Р. 21229-21234. DOI: https://doi.org/10.1073/pnas.1113103109

91. Komssi S., Aronen H.J., Huttunen J. et al. Ipsi- and contralateral EEG reactions to transcranial mag- netic stimulation. Clin. Neurophysiol. 2001. Iss. 113. Р. 175-184. DOI: https://doi.org/10.1016/S1388-2457(01)00721-0

92. Luber B., Lisanby S. H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage. 2014. Vol. 85. No. 3. Р. 961-970. DOI: https://doi.org/10.1016/j.neuroimage.2013.06.007

93. Luber B., Jangraw D.C. Appelbaum G. et al. Using Transcranial Magnetic Stimulation to Test a Network Model of Perceptual Decision Making in the Human Brain. Front. Hum. Neurosci. 2020. Iss. 14. Р. 1-10. DOI: https://doi.org/10.3389/fnhum.2020.00004

94. Zhi W., Li Y., Wang L. and Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells. 2025. Vol. 14. Iss. 2. e122. DOI: https://doi.org/10.3390/cells14020122

95. Ellerbrock I., Sandström A., Tour J. et al. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol. Brain. 2021. Vol. 14. No 81. Р. 1-15. URL: https://doi.org/10.1186/s13041-021-00789-4

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Maksym Chernenko (Translator); Tetiana Nehreba, Nataliya Voloshyna, Vitaliy Vasylovskyy, Tetiana Pohulaieva, Ivan Voloshyn-Haponov Voloshyn-Haponov (Author)