Gliocyte Secretomes as a Source of Growth Factors Affecting the Female Reproductive System
PDF

Keywords

conditioned medium
cell culture
glial cells
spinal ganglia
cryoextract
reproduction
neurotrophins

How to Cite

Bozhok, G., Komaromi, N., Ustychenko, V., Protsenko, O., Remnyova, N., & Legach, Y. (2025). Gliocyte Secretomes as a Source of Growth Factors Affecting the Female Reproductive System. SSP Modern Pharmacy and Medicine, 5(3), 38-44. https://doi.org/10.53933/g3njg993

Abstract

In the context of a growing global trend toward delayed motherhood, which is often accompanied by age-related decline in ovarian reserve and impaired reproductive function, research aimed at developing novel strategies for the assisted reproductive technologies is gaining particular significance. One of the promising approaches is the use of cell-based products in particular biologically active compositions that have a neurotrophin-like effect on the female reproductive system.

This study investigates the effects of biologically active compositions—including cryoextracts and conditioned media of cells isolated from the spinal ganglia of neonatal piglets—on the functional state of the reproductive system in female rats at a late reproductive age. Specifically, the study focuses on changes in the parameters of the estrous cycle following administration of these compositions.

The results revealed a statistically significant prolongation of the estrus phase in treated animals compared to intact controls, indicating potential activation of ovarian function and a favorable modification of reproductive status. These findings suggest that neurotrophic factors contained in the tested biological products may influence the regulation of primordial follicle development and maintenance of the ovarian reserve. This opens new prospects for the development of therapeutic agents aimed at fertility restoration, particularly in women with diminished ovarian reserve or poor response to conventional gonadotropin stimulation protocols in assisted reproductive technology programs.

PDF

References

1. Zhu Z., Xu W., Liu L. Ovarian aging: mechanisms and intervention strategies. Medical Review. 2022. Vol.2. No.6. P. 590-610. DOI: 10.1515/mr-2022-0031.;

2. Secomandi L., Borghesan M., Velarde M. et al. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Human Reproduction Update. 2022. Vol.28. No.2. P.172–189. URL: https://doi.org/10.1093/humupd/dmab038

3. Zhang X., Lu Y., Wu S. et al. Estimates of global research productivity in primary ovarian insufficiency from 2000 to 2021: Bibliometric analysis. Frontiers in Endocrinology.2022. Vol.13 DOI: 10.3389/fendo.2022.959905.

4. Prokopyuk V.Yu., Karpenko V.G., Shevchenko M.V. et al. Experience in clinical application of cryopreserved placental derivatives: cells, tissue, membranes, extract, and cord blood serum. Innovative Biosystems and Bioengineering. 2020. Vol.4. No.3. P. 168-176. DOI: 10.20535/ibb.2020.4.3.215215.

5. Eiro N., Sendon-Lago J., Seoane S. et al. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget. 2014. Vol.5. No. 21. DOI: 10.18632/oncotarget.2530.

6. Polonio A.M., García-Velasco J.A., Herraiz S. Stem Cell Paracrine Signaling for Treatment of Premature Ovarian Insufficiency. Frontiers in Endocrinology. 2021. Vol.11. DOI: 10.3389/fendo.2020.626322.

7. Liu M., Li W., Zhou X. et al. Cell-Free Fat Extract Improves Ovarian Function and Fertility in Mice With Advanced Age. Frontiers in Endocrinology. 2022. Vol.13. DOI: 10.3389/fendo.2022.912648.

8. Valtetsiotis K., Valsamakis G., Charmandari E. et al. Metabolic Mechanisms and Potential Therapeutic Targets for Prevention of Ovarian Aging: Data from Up-to-Date Experimental Studies. International Journal of Molecular Sciences. 2023. Vol.24. No.12. DOI: 10.3390/ijms24129828.

9. Li X., Zhang D., Yu Y. et al. Umbilical cord-derived mesenchymal stem cell secretome promotes skin regeneration and rejuvenation: From mechanism to therapeutics. Cell proliferation. 2024. Vol.57. No.4. DOI: 10.1111/cpr.13586.

10. L. PK., Kandoi S., Misra R. et al. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine & Growth Factor Reviews. 2019. Vol.46. P.1-9. DOI: 10.1016/j.cytogfr.2019.04.002.

11. Chow R., Wessels J.M., Foster W.G. Brain-derived neurotrophic factor (BDNF) expression and function in the mammalian reproductive Tract. Human Reproduction Update. 2020. Vol.26. No.4. P. 545-564. DOI: 10.1093/humupd/dmaa008.

12. Seifer D.B., Feng B., Shelden R.M. Immunocytochemical evidence for the presence and location of the neurotrophin-Trk receptor family in adult human preovulatory ovarian follicles. American Journal of Obstetrics and Gynecology. 2006. Vol.194. No.4. P.1129-1134. DOI: 10.1016/j.ajog.2005.12.022.

13. Harel S., Jin S., Fisch B. et al. Tyrosine kinase B receptor and its activated neurotrophins in ovaries from human fetuses and adults. Molecular Human Reproduction. 2006. Vol.12. No.6. P.357-365. DOI: 10.1093/molehr/gal033.

14. Walker M.J., Xu X.M. History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair. Brain Sciences. 2018. Vol.8. No.6. P.109. DOI: 10.3390/brainsci8060109.

15. Hwang K., Jung K., Kim I.S. et al. Glial Cell Line-derived Neurotrophic Factor-overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury. Experimental Neurobiology. 2019. Vol.28. No.6. P. 679-696. DOI: 10.5607/en.2019.28.6.679.

16. Bradshaw R.A. Nerve growth factor. Annual Review of Biochemistry. 1978. Vol.47. P. 191-216. DOI: 10.1146/annurev.bi.47.070178.001203.

17. Lin L.F., Doherty D.H., Lile J.D. et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993.Vol.260. No.5111. P. 1130-1132. DOI: 10.1126/science.8493557.

18. Ali S., Moiseieva N., Bozhok G. Cryopreservation of cell culture derived from dorsal root ganglia of neonatal pigs. Problems of Cryobiology and Cryomedicine. 2020. Vol.30. No.2. P.158–168. DOI: 10.15407/cryo30.02.158.

19. Sengupta P. The laboratory Rat: Relating its age with human's. International Journal of Preventive Medicine. 2013. Vol.4. No.6. P. 624-630. URL: https://pubmed.ncbi.nlm.nih.gov/23930179/

20. Globa V.Y., Bondarenko T.P., Ali S.G. et al. Contractile activity of detrusor of rats with infravesical obstruction after introduced cryoextract of spinal ganglia and biologically active products of mantle gliocyte culture. Problems of Cryobiology and Cryomedicine. 2019. Vol.29. No.2. P. 164. URL: https://doi.org/10.15407/cryo29.02.164

21. Cora M.C., Kooistra L., Travlos G. Vaginal Cytology of the Laboratory Rat and Mouse: Review and Criteria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicologic Pathology. 2015. Vol.43. No. 6. P.776-793. DOI: 10.1177/0192623315570339.

22. Sato J., Nasu M., Tsuchitani M. Comparative histopathology of the estrous or menstrual cycle in laboratory animals. Journal of Toxicologic Pathology. 2016. Vol.29. No.3. P.155-162. DOI: 10.1293/tox.2016-0021.

23. McLean A.C., Valenzuela N., Fai S. et al. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. Journal of Visualized Experiments. 2012. Vol. 67. DOI: 10.3791/4389.

24. Westwood F.R. The female rat reproductive cycle: a practical histological guide to staging. Toxicologic Pathology. 2008. Vol.36. No.3. P.375-384. DOI: 10.1177/0192623308315665.

25. Dissen G.A., Romero C., Paredes A., Ojeda S.R. Neurotrophic control of ovarian development. Microscopy Research and Technique. 2002. Vol.59. No. 6. P.509-515. DOI: 10.1002/jemt.10227.

26. Kerr B., Garcia-Rudaz C., Dorfman M. et al. NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reproduction. 2009. Vol.138. No.1. P.131-40. DOI: 10.1530/REP-08-0474.

27. Nesteruk H.V., Kolot N.V., Protsenko O.S. et al. The effect of spinal ganglia cryoextract on the structural and functional characteristics of rat ovaries of different ages. Visnyk problem biologii i medytsyny, Vol.4. No.158. P. 173–177. URL: https://doi.org/10.29254/2077-4214-2020-4-158-173-177

28. Oehninger S. Poor responders in in vitro fertilization (IVF) therapy: the challenge continues. Facts, Views and Vision in ObGyn. 2011. Vol.3. No.2. P. 101-108. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC3987493/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Galyna Bozhok, Nataliia Komaromi, Viktoriia Ustychenko, Olena Protsenko, Nataliia Remnyova, Yevgen Legach (Author)