Abstract
Stem cell-based therapies represent a transformative advancement in regenerative medicine, offering unprecedented opportunities to restore, replace, or regenerate damaged tissues and organs. Among these, xenogeneic cell therapy—utilizing cells derived from non-human animal sources—has shown therapeutic potential in both preclinical and early clinical settings. Functional improvements have been demonstrated with xenogeneic hepatocytes, pancreatic islet cells, and neural progenitors, highlighting their promise for treating organ dysfunction and degenerative conditions. However, concerns remain regarding the oncogenic risk associated with stem cell-based interventions, particularly those involving xenogeneic sources. To address these concerns, we employed the BALB/c 3T3 Cell Transformation Assay (BALB-CTA), a validated in vitro model replicating key stages of carcinogenesis, to evaluate the tumorigenic potential of various xenogeneic progenitor stem cell cultures.
Progenitor cells from multiple tissue lineages were tested for their ability to induce malignant transformation, as evidenced by the formation of morphologically aberrant foci in BALB/c-3T3 cells. While the assay reliably detected transformation with known carcinogens such as 3-methylcholanthrene (MCA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), none of the xenogeneic progenitor cell cultures exhibited tumor-initiating or promoting activity. Additionally, no lineage-specific differences were observed, indicating a consistent safety profile across different progenitor cell types.
These findings support the non-carcinogenic nature of xenogeneic progenitor cell therapies in vitro and provide important preclinical evidence supporting their safety in regenerative medicine applications.
References
1. Trounson A., McDonald C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell. 2015. Vol. 17. Iss. 1. P. 11–22. DOI: https://doi.org/10.1016/j.stem.2015.06.007. URL: https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(15)00264-5
2. Li Y., Zhang Q., Yin X., Yang W., Du Y., Hou P., Deng H. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research. 2014. Vol. 21. Iss. 1. P. 196–204. DOI: https://doi.org/10.1038/cr.2010.13. URL: https://www.nature.com/articles/cr201013
3. Harrison R.P., Rafiq Q.A., Medcalf N., Bakar M. Cell therapy bioprocessing: the bottlenecks and solutions. Biochemical Engineering Journal. 2020. Vol. 153. P. 107418. DOI: https://doi.org/10.1016/j.bej.2019.107418. URL: https://www.sciencedirect.com/science/article/pii/S1369703X19302810
4. EMA. Guideline on human cell-based medicinal products. European Medicines Agency. 2011. URL: https://www.ema.europa.eu/en/human-cell-based-medicinal-products
5. FDA. Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) – Regulatory Considerations. U.S. Food & Drug Administration. 2021. URL: https://www.fda.gov/vaccines-blood-biologics/tissue-tissue-products
6. Lee A.S., Tang C., Rao M.S., Weissman I.L., Wu J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine. 2013. Vol. 19. Iss. 8. P. 998–1004. DOI: https://doi.org/10.1038/nm.3261. URL: https://www.nature.com/articles/nm.3261
7. Denner J. Infectious risk in xenotransplantation – what post-transplant screening for viral infections should be done? Clinical and Experimental Immunology. 2016. Vol. 183. Iss. 2. P. 157–164. DOI: https://doi.org/10.1111/cei.12720. URL: https://academic.oup.com/cei/article/183/2/157/2452950
8. Zhou T., Benda C., Duzinger S., Huang Y., Li X., Li Y., et al. Generation of human induced pluripotent stem cells from urine samples. Nature Protocols. 2019. Vol. 7. Iss. 12. P. 2080–2089. DOI: https://doi.org/10.1038/nprot.2012.115. URL: https://www.nature.com/articles/nprot.2012.115
9. Volarevic V., Gazdic M., Volarevic A., Jovicic N., Arsenijevic N., Lako M. Mesenchymal stem cell-derived factors: immuno-modulatory effects and therapeutic potential. BioFactors. 2018. Vol. 44. Iss. 4. P. 357–367. DOI: https://doi.org/10.1002/biof.1436. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/biof.1436
10. Chen K., Wang D., Du W., Zhang L. Mesenchymal stem cells in tumor progression: Emerging roles and mechanisms. Cancer Letters. 2019. Vol. 440–441. P. 80–88. DOI: https://doi.org/10.1016/j.canlet.2018.10.020. URL: https://www.sciencedirect.com/science/article/pii/S0304383518305426
11. Cooper D.K.C., Ekser B., Tector A.J. A brief history of clinical xenotransplantation. International Journal of Surgery. 2016. Vol. 23. Pt B. P. 205–210. DOI: https://doi.org/10.1016/j.ijsu.2015.10.054. URL: https://www.sciencedirect.com/science/article/pii/S1743919115302407
12. Barrett J.C., Ts’o P.O. Evidence for the progressive nature of neoplastic transformation in vitro. Proceedings of the National Academy of Sciences USA. 1978. Vol. 75. P. 3761–3765. DOI: https://doi.org/10.1073/pnas.75.8.3761. URL: https://www.pnas.org/content/75/8/3761
13. Vanparys P., et al. Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics. Mutation Research. 2012. Vol. 744. P. 111–116. DOI: https://doi.org/10.1016/j.mrgentox.2012.01.012. URL: https://www.sciencedirect.com/science/article/abs/pii/S1383571812000310
14. Sasaki K., et al. Photo catalogue for the classification of foci in the BALB/c 3T3 cell transformation assay. Mutation Research. 2012. Vol. 744. P. 42–53. DOI: https://doi.org/10.1016/j.mrgentox.2012.01.005. URL: https://www.sciencedirect.com/science/article/abs/pii/S1383571812000152
15. U.S. FDA. Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans; Guidance for Industry. Food and Drug Administration, Center for Biologics Evaluation and Research. December, 2016. URL: https://www.fda.gov/media/75724/download
16. U.S. FDA. Expedited Programs for Regenerative Medicine Therapies for Serious Conditions. Food and Drug Administration, Center for Biologics Evaluation and Research. February, 2019. URL: https://www.fda.gov/media/120267/download
17. EMA. Guideline on xenogeneic cell-based medicinal products. European Medicines Agency. 2009. URL: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-xenogeneic-cell-based-medicinal-products_en.pdf
18. Meier R.P.H., Muller Y.D., Balaphas A., Morel P., Pascual M., Seebach J.D., Buhler L.H. Xenotransplantation: back to the future? Transplant International. 2018. Vol. 31. Iss. 5. P. 465–477. DOI: https://doi.org/10.1111/tri.13129. URL: https://onlinelibrary.wiley.com/doi/10.1111/tri.13129
19. Ekser B., Li P., Cooper D.K.C. Xenotransplantation: past, present, and future. Current Opinion in Organ Transplantation. 2017. Vol. 22. Iss. 6. P. 513–521. DOI: https://doi.org/10.1097/MOT.0000000000000465. URL: https://journals.lww.com/co-transplantation/Fulltext/2017/12000/Xenotransplantation__past,_present,_and_future.10.aspx
20. Hawthorne W.J., Cowan P.J., Buhler L.H., Yi S., Bottino R., Pierson R.N., Ahn C., Azimzadeh A., Cozzi E., Gianello P., Lakey J.R.T., et al. Third WHO global consultation on regulatory requirements for xenotransplantation clinical trials, Changsha, Hunan, China December 12–14, 2018: “The 2018 Changsha Communique”. Xenotransplantation. 2019. Vol. 26. Iss. 2. Article e12513. DOI: https://doi.org/10.1111/xen.12513. URL: https://onlinelibrary.wiley.com/doi/10.1111/xen.12513
21. Combes R., Balls M., Curren R., Tanaka N., Yamasaki H. Cell transformation assay as predictors of human carcinogenicity. Alternatives to Laboratory Animals. 1999. Vol. 27. P. 745–767. URL: https://journals.sagepub.com/doi/abs/10.1177/026119299902700605
22. OECD. Detailed review paper on cell transformation assays for detection of chemical carcinogens. OECD Environment, Health and Safety Publications, Series on Testing and Assessment. 2007. No. 31. ENV/JM/MONO (2007)18. URL: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2007)18&doclanguage=en
23. Corvi R., Aardema M., Gribaldo L., Hayashi M., Hoffmann S., Schechtman L.M., Vanparys P. ECVAM prevalidation study on in vitro cell transformation assays: general outline and conclusions. Mutation Research. 2012. Vol. 744. P. 12–19. DOI: https://doi.org/10.1016/j.mrgentox.2012.01.001. URL: https://www.sciencedirect.com/science/article/abs/pii/S1383571812000103
24. Huang C.P., Chen C.C., Shyr C.R. Xenogeneic cell therapy provides a novel potential therapeutic option for cancers by restoring tissue function, repairing cancer wound and reviving anti-tumor immune responses. Cancer Cell International. 2018. Vol. 18. Article 9. DOI: https://doi.org/10.1186/s12935-018-0501-8. URL: https://cancerci.biomedcentral.com/articles/10.1186/s12935-018-0501-8
25. Yang Y.G., Sykes M. Xenotransplantation: current status and a perspective on the future. Nature Reviews Immunology. 2007. Vol. 7. Iss. 7. P. 519–531. DOI: https://doi.org/10.1038/nri2097. URL: https://www.nature.com/articles/nri2097
26. Cardona K., Korbutt G.S., Milas Z., Lyon J., Cano J., Jiang W., et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nature Medicine. 2006. Vol. 12. Iss. 3. P. 304–306. DOI: https://doi.org/10.1038/nm1369. URL: https://www.nature.com/articles/nm1369
27. Hering B.J., Wijkstrom M., Graham M.L., Hardstedt M., Aasheim T.C., Jie T., et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nature Medicine. 2006. Vol. 12. Iss. 3. P. 301–303. DOI: https://doi.org/10.1038/nm1350. URL: https://www.nature.com/articles/nm1350
28. Fink J.S., Schumacher J.M., Ellias S.L., Palmer E.P., Saint-Hilaire M., Shannon K., et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplantation. 2000. Vol. 9. Iss. 2. P. 273–278. DOI: https://doi.org/10.1177/096368970000900217. URL: https://journals.sagepub.com/doi/10.1177/096368970000900217
29. Llovet J.M., Burroughs A., Bruix J. Hepatocellular carcinoma. Lancet. 2003. Vol. 362. Iss. 9399. P. 1907-1917. DOI: https://doi.org/10.1016/S0140-6736(03)14964-1. URL: https://www.sciencedirect.com/science/article/pii/S0140673603149641
30. Sakai A. BALB/c 3T3 cell transformation assays for the assessment of chemical carcinogenicity. Japanese Society for Alternatives to Animal Experiments. 2007. Vol. 14. P. 367–373. URL: https://www.jstage.jst.go.jp/article/jsaae/14/0/14_0_367/_pdf
31. Schechtman L.M. Rodent cell transformation assays – a brief historical perspective. Mutation Research. 2012. Vol. 744. P. 3–7. DOI: https://doi.org/10.1016/j.mrgentox.2011.11.012. URL: https://www.sciencedirect.com/science/article/abs/pii/S1383571811002765
32. Poburski D., Thierbach R. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies. Scientific Reports. 2016. Vol. 6. Article 32966. DOI: https://doi.org/10.1038/srep32966. URL: https://www.nature.com/articles/srep32966
33. Berwald Y., Sachs L.I.N. Vitro cell transformation with chemical carcinogens. Nature. 1963. Vol. 200. P. 1182–1184. DOI: https://doi.org/10.1038/2001182a0. URL: https://www.nature.com/articles/2001182a0
34. Kakunaga T. A quantitative system for assay of malignant transformation by chemical carcinogens using a clone derived from BALB-3T3. International Journal of Cancer. 1973. Vol. 12. P. 463–473. DOI: https://doi.org/10.1002/ijc.2910120313. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.2910120313
35. Chan M.K.S., Wong M.B.F., Klokol D., et al. Exploring the toxicity and carcinogenic potential of 300 KDA “Mito Organelles” ™ cellular extracts through MTT and BALB/C-3T3 cell transformation assays: a vital component of peptide and protein biomedical research and safety study. Journal of Stem Cell Research & Therapeutics. 2024. Vol. 9. Iss. 1. P. 9-15. URL: https://www.peertechzpublications.com/articles/OJPS-9-141.php
36. Kakunaga T., Crow J.D. Cell variant showing differential susceptibility to ultraviolet light-induced transformation. Science. 1980. Vol. 209. P. 505–507. DOI: https://doi.org/10.1126/science.7384791. URL: https://www.science.org/doi/10.1126/science.7384791
37. IARC/NCI/EPA Working Group. Cellular and molecular mechanisms of cell transformation and standardization of transformation assays of established cell lines for the prediction of carcinogenic chemicals: overview and recommended protocols. Cancer Research. 1985. Vol. 45. P. 2395–2399. URL: https://cancerres.aacrjournals.org/content/45/5/2395
38. Hoffmann S., Hothorn L.A., Edler L., Kleensang A., Suzuki M., Phrakonkham P., Gerhard D. Statistical analysis of BALB/c 3T3 cell transformation assay data. Mutation Research. 2012. Vol. 744. P. 36–41. DOI: https://doi.org/10.1016/j.mrgentox.2012.01.003. URL: https://www.sciencedirect.com/science/article/abs/pii/S1383571812000085
39. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2009. URL: http://www.R-project.org
40. Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biometrical Journal. 2008. Vol. 50. P. 346-363. DOI: https://doi.org/10.1002/bimj.200810425. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.200810425

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Mike K.S. Chan, Michelle B.F. Wong, Shing Yi Pan, Volodymyr Chernykh, Nataliia Shyshkina, Margaryta Yemeliyanova, Dmytro Klokol, Olha Nishkumai, Glen Alvin, Oleg Kobzev, Svitlana Dubynska, Jonathan Lakey (Author)